
General Debiasing for Multimodal Sentiment Analysis
Teng Sun

Shandong University
stbestforever@gmail.com

Juntong Ni
Shandong University

juntongni02@gmail.com

Wenjie Wang∗
National University of Singapore

wenjiewang96@gmail.com

Liqiang Jing
Shandong University

jingliqiang6@gmail.com

Yinwei Wei
National University of Singapore

weiyinwei@hotmail.com

Liqiang Nie
Harbin Institute of Technology (Shenzhen)

nieliqiang@gmail.com

ABSTRACT
Existing work on Multimodal Sentiment Analysis (MSA) utilizes
multimodal information for prediction yet unavoidably suffers from
fitting the spurious correlations between multimodal features and
sentiment labels. For example, if most videos with a blue back-
ground have positive labels in a dataset, the model will rely on
such correlations for prediction, while “blue background” is not
a sentiment-related feature. To address this problem, we define
a general debiasing MSA task, which aims to enhance the Out-
Of-Distribution (OOD) generalization ability of MSA models by
reducing their reliance on spurious correlations. To this end, we
propose a general debiasing framework based on Inverse Proba-
bility Weighting (IPW), which adaptively assigns small weights to
the samples with larger bias (i.e., the severer spurious correlations).
The key to this debiasing framework is to estimate the bias of each
sample, which is achieved by two steps: 1) disentangling the robust
features and biased features in each modality, and 2) utilizing the bi-
ased features to estimate the bias. Finally, we employ IPW to reduce
the effects of large-biased samples, facilitating robust feature learn-
ing for sentiment prediction. To examine the model’s generalization
ability, we keep the original testing sets on two benchmarks and ad-
ditionally construct multiple unimodal andmultimodal OOD testing
sets. The empirical results demonstrate the superior generalization
ability of our proposed framework. We have released the code to
facilitate the reproduction https://github.com/Teng-Sun/GEAR.
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1 INTRODUCTION
Sentiment analysis, a classical language understanding task, has
attracted wide attention from the academy and industry. The early
work chiefly utilizes users’ textual reviews to analyze their senti-
ment [15, 21]. However, single textual modality usually has prob-
lems of polysemy and ambiguity [3, 43]. Along with the advance
of social media, more and more people begin to adopt multimodal
information to express their sentiments, such as video and au-
dio [11, 12, 25, 27, 28]. The cross-modal consistency and comple-
mentarity provide rich semantic information for sentiment analysis.
Therefore, Multimodal Sentiment Analysis (MSA) has been a popu-
lar research field in recent years [16, 22, 38, 40, 45].

Previous studies of MSA predominantly pay attention to rep-
resentation learning and multimodal fusion. For representation
learning, some researchers utilize techniques like adversarial learn-
ing [18] and multi-task learning [8] to map features from different
modalities into a shared representation space. Self-supervised learn-
ing [39] is also used to incorporate unimodal information into the
fusion model to aid representation learning. For multimodal fusion,
previous work manages to learn cross-modal representation using
sophisticated fusion mechanisms, such as tensor-based fusion [41]
and graph-based fusion [44]. In addition, some studies [24, 31] also
attempt to integrate modalities via pre-trained transformers (e.g.,
BERT [5] and XLNet [37]).

However, existing studies usually suffer from fitting the spurious
correlation between multimodal features and sentiment labels. As
shown in Figure 1, the word “movie” in Figure 1(a) and the attribute
“blue background” in Figure 1(b) show strong correlations with neg-
ative and positive sentiment labels, respectively. However, “movie”
and “blue background” are not reliable cues for identifying senti-
ment. Due to the short-cut bias [7], theMSAmodels will easily learn
such spurious correlations for prediction, impairing the generaliza-
tion ability in the Out-Of-Distribution (OOD) testing data, where
the correlations between multimodal features and sentiment labels
differ from those in the training data. For instance, Sun et al. [29]
pointed out the spurious correlations between textual words and
sentiment labels. Nevertheless, there are also spurious correlations
in video and audio modalities in addition to textual modality.
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Figure 1: The distribution of the top-5 most frequent words
and visual attributes.

To address the above problems, we first propose a general debi-
asing task for MSA, which aims to enhance the OOD generalization
ability of MSAmodels by reducing the bad effect of multimodal spu-
rious correlations. To mitigate the effect of spurious correlations, a
widely used method is Inverse Probability Weighting (IPW), where
a sample with strong bias will be assigned a small weight for train-
ing. To implement IPW, the key lies in estimating the bias of each
sample, which depends on two steps: 1) disentangling the robust
features (i.e., sentiment-related features such as smiling face) and
biased features (i.e., sentiment-irrelevant features such as the blue
background) in each modality, and 2) utilizing the biased features
to estimate the sample bias.

To disentangle multimodal features for estimating bias weights,
we propose a General dEbiAsing fRamework (GEAR) with three
stages. First, we design three pairs of robust extractors and biased
extractors, where each pair is used to extract the robust features
and biased features in a modality. Second, to disentangle biased
features, prior studies usually consider using Generalized Cross
Entropy (GCE) loss [46] to train the biased extractor and amplify
the prejudice for bias estimation. However, such GCE loss cannot
be applied to debiasing MSA since MSA is usually formulated as a
regression task instead of the classification task [41]. Toward this
challenge, we propose a novel Generalized Mean Absolute Error
(GMAE) loss, which is specially designed to disentangle biased fea-
tures in the MSA task. We then estimate the bias weight from biased
features by calculating the absolute error between the outputs of
the three biased extractors and sentiment labels. The underlying
philosophy is that the biased features with strong correlations will
have a lower absolute error and vice versa. Third, to reinforce the
generalization ability, we use the estimated bias weights to adjust
IPW-based Mean Absolute Error (MAE) loss for debiasing training
and fuse the robust features of three modalities for prediction.

To evaluate the generalization ability of MSA models, we con-
struct four OOD testing sets while keeping the original testing set
as an Independent and Identical Distribution (IID) testing set on

two benchmarks. The empirical results demonstrate the superior
generalization ability of GEAR on OOD testing sets while maintain-
ing comparable IID performance with state-of-the-art methods. To
sum up, our contributions are threefold.

• To the best of our knowledge, we are the first to formulate a gen-
eral debiasing MSA task from multiple modalities. Meanwhile, to
examine the generalization ability of MSA models, we contribute
several multimodal OOD testing datasets.

• We propose a novel framework GEAR, which strengthens the
generalization ability of MSA models by disentangling the robust
and biased features via a novel GMAE loss and estimating the
bias weight of each sample for IPW-enhanced debiasing training.

• We conduct extensive experiments on two datasets (i.e., MOSEI
and MOSI [43]), and the experimental results demonstrate the
superior generalization ability of GEAR.

2 RELATEDWORK

• Multimodal Sentiment Analysis. In recent years, a substan-
tial number of researchers have explored the MSA. The prior re-
searchers mainly focused on representation learning and multi-
modal fusion. For representation learning, previous studies mainly
are in three variants: 1) Shift-based models shift textual representa-
tions based on aligned nonverbal behaviors (i.e., audio and vision
modality) [35]. 2) Shared subspace learning models map all the
modalities simultaneously into modality-invariant and modality-
specific representations [8]. And 3) Self-supervised models generate
the unimodal labels by self-supervised learning strategy and use
multi-task learning to train the model [39]. For multimodal fusion,
according to the fusion stages, two multimodal fusion strategies are
applied: 1) early fusion [24, 30, 31, 36, 42] means that the features of
different modalities are combined together in an early stage. And 2)
late fusion [4, 17, 41] indicates that the intra-modal representation
is learned first and inter-modal fusion is performed last.

Although existing studies have achieved great success, they ig-
nore the spurious correlations between modalities and sentiment
labels. Hence, Sun et al. [29] is the first to settle this issue, which
introduces a model-agnostic counterfactual reasoning framework
(CLUE) for MSA that can leverage the positive aspects of text-based
modality and mitigate potential drawbacks. However, CLUE can
only handle the case of spurious correlations in a single textual
modality, and cannot satisfactorily deal with multiple modalities
with spurious correlations. To this end, we presented a general
debiasing MSA network to improve the OOD generalization ability.

• General Debiasing Methods. The existing general debiasing
methods can be divided into three categories. 1) Debiasing with
known bias types and labels. Many debiasing methods [1, 10, 34]
require explicit bias types and bias annotations for each training
sample. 2) Debiasing with known bias types. To eliminate the costs
of bias annotations, some bias-tailored studies [2, 32] only require
bias types. 3) Debiasing with unknown bias types. The above as-
sumptions face limitations since manually discovering bias types
strongly relies on expert knowledge and laborious labeling [20, 33].
The following work estimates the bias of each sample without
knowing its bias types and labels. Nam et al. [20] trained a debiased
classifier from the biased classifier by utilizing GCE and relative
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difficulty score. Lee et al. [14] learned debiased representation via
disentangled feature augmentation. Fan et al. [6] applied the meth-
ods from the previous two works to graph data debiasing.

However, multimodal data have the complex bias which is infea-
sible to be recognized. To this end, we resorted to the third category.
Yet most existingmethods are designed for image datasets and could
not effectively conduct debiasing with multimodal data. Thus, we
designed a debiasing framework specified for multimodal features.

3 METHODOLOGY
In this section, we first give the task formulation, and then we
present the overall framework and the detailed modules.

3.1 Task formulation
3.1.1 Traditional MSA Task. Let D = {𝑇𝑖 , 𝐴𝑖 ,𝑉𝑖 , 𝑌𝑖 }𝑁1 denote the
MSA training set with 𝑁 training samples. Each quadruple is from a
video segment, where𝑇𝑖 ,𝐴𝑖 ,𝑉𝑖 and𝑌𝑖 denote text, audio, video, and
the corresponding sentiment label of the 𝑖-th sample, respectively.
The traditional MSA task aims to develop a model F𝜃 which jointly
utilizes three modalities (i.e., 𝑇𝑖 , 𝐴𝑖 and 𝑉𝑖 ) to predict sentiment
label 𝑌𝑖 as follows,

�̃�𝑖 = F𝜃 (𝑇𝑖 , 𝐴𝑖 ,𝑉𝑖 ), (1)

where 𝜃 represents the learnable parameters and �̃�𝑖 denotes the
predicted label of the 𝑖-th sample. For clarity, we temporally omit
the subscript 𝑖 of the training samples.

3.1.2 General Debiasing MSA Task. Traditional MSA models rely
on complementary and consistent multimodal information for sen-
timent prediction. However, existing MSA models suffer from spu-
rious correlations between multimodal features and sentimental
labels. As mentioned before, the word “movie” is highly correlated
with the negative sentiment, and the attribute “blue background”
has a strong correlation with the positive sentiment in the MO-
SEI dataset. Trained with such biased data, models tend to pre-
dict samples with the word “movie” as negative samples and “blue
background” as positive samples, which strongly deteriorates the
generalization performance of MSA models.

To reduce the negative influence caused by multimodal spurious
correlations, we formulate the general debiasing MSA task, which
aims to evaluate the generalization ability of different MSA models
on the OOD testing set. To achieve this, we propose an algorithm
to automatically build OOD testing sets based on the original IID
testing set. Specifically, the OOD testing sets have significantly
different multimodal sentiment correlations from the training set.
The different multimodal distributions in OOD testing sets and the
training set are able to effectively evaluate whether MSA models
have strong debiasing ability.

3.2 Framework
As can be seen in Figure 2, the overall framework is as follows: 1)
Disentangled Representation Learning Module: for a given sample
with three modalities, we first disentangle the robust and biased fea-
tures of each modality by robust and biased extractors, respectively.
Then, we swap the robust and biased features, which synthesizes
more diverse samples and facilitates the disentanglement. 2) Bias Es-
timation Module: we devise GMAE loss to boost the training of bias

extractors. In addition, we calculate the absolute values between
the prediction based on multimodal biased features and sentiment
labels. The absolute values of three modalities are used to estimate
the bias weight of each sample. 3) Debiasing Optimization Module:
we fuse the multimodal robust features by multi-head self-attention
and employ IPW-enhanced MAE loss for training robust extractors.
We utilize IPW to re-weight the samples by bias weights, which
discourages the influence of samples with a large bias. Each module
will be elaborated on in the following sub-sections.

3.3 Disentangled Representation Learning
To disentangle the robust features and biased features in eachmodal-
ity, we simultaneously train three pairs of biased extractors and
robust extractors. In addition, to facilitate disentanglement, we
swap the robust and biased latent vectors and synthesize more
diverse samples.

3.3.1 Robust and Biased Extractors. To extract robust and biased
features in each modality, we present three pairs of the robust
extractors 𝐸𝑚

𝑅
and biased extractors 𝐸𝑚

𝐵
,𝑚 ∈ {𝑡, 𝑎, 𝑣}.

Extractors for Textual Modality. In the textual modality, due
to the great success of large pre-trained transformer-based lan-
guage models, we utilize the pre-trained BERT as the backbone to
extract textual representations of the raw text. Similar to the exist-
ing studies [24], we select the first [CLS] token in the last layer as
the whole textual representation. After that, we employ the linear
layers to map the features to the low-dimension semantic space.
We feed raw text 𝑇 into the textual robust extractors and biased
extractors to gain robust and biased latent vectors of text (i.e., v𝑡𝜅 ).
The whole structures of the textual robust and biased extractors
are formulated as follows,

v𝑡𝜅 = 𝐸𝑡𝜅 (𝑇 ) = W𝑡
𝜅 (𝐵𝐸𝑅𝑇 𝑡

𝜅 (𝑇 )) + b𝑡𝜅 , (2)

where 𝜅 ∈ {𝑅, 𝐵}, v𝑡𝜅 ∈ R𝑑𝑠 , W𝑡
𝜅 ∈ R𝑑𝑠×𝑑𝑡 , b𝑡𝜅 ∈ R𝑑𝑠 , 𝑑𝑠 and 𝑑𝑡

denote the dimensions of the latent vectors and BERT’s output.
Extractors for Acoustic and Visual Modalities. In acous-

tic and visual modalities, we employ the hand-crafted features
extracted by Yu et al. [39] from the raw data, A ∈ R𝑙𝑎×𝑑𝑎 and
V ∈ R𝑙𝑣×𝑑𝑣 . Here, 𝑙𝑎 and 𝑙𝑣 are the sequence lengths of audio and
video, respectively. 𝑑𝑎 and 𝑑𝑣 are the extracted hand-crafted fea-
tures dimension of audio and video, respectively. Then, we use the
1-layer Long Short-Term Memory (LSTM) [9] to capture the tem-
poral information. Similar to previous work [8, 39], we select the
final states vector of LSTM as the whole modality representation.
The robust and biased extractors of audio and video are similar to
the ones of text except for the backbone, where we replace BERT
with LSTM. The structures of the robust and biased extractors of
audio and video are as follows,{

v𝑎𝜅 = 𝐸𝑎𝜅 (A) = W𝑎
𝜅 (𝐿𝑆𝑇𝑀𝑎

𝜅 (A)) + b𝑎𝜅 ,

v𝑣𝜅 = 𝐸𝑣𝜅 (V) = W𝑣
𝜅 (𝐿𝑆𝑇𝑀𝑣

𝜅 (V)) + b𝑣𝜅 ,
(3)

where v𝑎/𝑣𝜅 ∈ R𝑑𝑠 denote the robust and biased latent vectors of
audio and video, W𝑎/𝑣

𝜅 ∈ R𝑑𝑠×𝑑
′
𝑎/𝑣 , b𝑎/𝑣𝜅 ∈ R𝑑𝑠 , and 𝑑′

𝑎/𝑣 are the
dimension of the output of LSTM.

3.3.2 Diversify Samples via Swap. We argue that the diversity of
samples is of vital importance for disentanglement. With the visual
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Figure 2: Illustration of the proposed general debiasing framework, which consists of disentangled representation learning,
bias estimation, and debiasing optimization.

modality as an example, the facial expressions reflect sentiment
precisely. It is interesting to note that yellow can make people
feel happy, so abundant samples contain the pair of (Smile, Yellow)
which means a smile and yellow background coexist in an image.
On the contrary, purple tends to make people feel sad, so ample
samples contain (Frown, Purple). In the two pairs, the facial expres-
sions are robust attributes and the colors of the background are
biased attributes. While the above architecture disentangles the
robust features and bias features, 𝐸𝑚

𝑅
and 𝐸𝑚

𝐵
are still mainly trained

with small amounts of samples that have poor diversity. Thereby,
the above architecture is able to disentangle (Smile, Yellow) and
(Frown, Purple), but not (Smile, Purple) and (Frown, Yellow) due to
the limited number of such samples, which deteriorates the model’s
performance. Thus, we need more samples with rich diversity (e.g.,
(Smile, Purple) and (Frown, Yellow)). To this end, we swap the latent
vectors to synthesize more diverse samples.

By three pairs of robust and biased extractors for three modali-
ties, we get robust and biased latent vectors of each modality (i.e.,
v𝑚
𝑅

and v𝑚
𝐵
). To diversify samples, we utilize these preliminary

disentangled features for swap. We propose to generate diverse
samples in latent embedding space by swapping biased latent vec-
tors. More specifically, we replace each biased vector v𝑚

𝐵
with a

randomly selected biased vector v̂𝑚
𝐵

∈ R𝑑𝑠 in the same mini-batch.
To synthesize diverse samples, we concatenate robust and cor-

responding biased latent vectors, and also concatenate robust and
randomly selected biased latent vectors. In detail, concatenated
vectors v𝑚 are as follows,

v𝑚 = [v𝑚𝑅 ; v𝑚𝐵 ], (4)

where v𝑚 ∈ R2𝑑𝑠 denote the latent vectors that are combined
with the robust latent vectors and biased latent vectors without
swapping. Then, we concat v𝑚

𝑅
and v̂𝑚

𝐵
to obtain v̂𝑚 as follows,

v̂𝑚 = [v𝑚𝑅 ; v̂𝑚𝐵 ], (5)

where v̂𝑚 ∈ R2𝑑𝑠 represent the latent vectors that are combined
with robust latent vectors and swapped biased latent vectors. Thus,
by swapping, we acquire additional latent vectors v̂𝑚 that have the
same robust latent vector but a different biased latent vector with
v𝑚 . By this, we can get more samples with diverse (robust features,
biased features) combinations.

To make the disentangled representation learning module meet
more diverse samples and gain a stronger ability of disentanglement,

v𝑚 and v̂𝑚 are both fed into pairs of robust and biased linear layers
(𝐿𝑚

𝑅
, 𝐿𝑚

𝐵
), which extract robust features f𝑚

𝑅
, f̂
𝑚

𝑅 ∈ R𝑑𝑠 and biased
features f𝑚

𝐵
, f̂
𝑚

𝐵 ∈ R𝑑𝑠 of each modality as follows,{
f𝑚𝜅 = 𝐿𝑚𝜅 (v𝑚) = 𝑅𝑒𝐿𝑈 (W𝑚

𝜅 v𝑚 + b𝑚𝜅 ),

f̂
𝑚

𝜅 = 𝐿𝑚𝜅 (v̂𝑚) = 𝑅𝑒𝐿𝑈 (W𝑚
𝜅 v̂𝑚 + b𝑚𝜅 ),

(6)

where W𝑚
𝜅 ∈ R(𝑑𝑠 )×2𝑑𝑠 , b𝑚𝜅 ∈ R𝑑𝑠 , and 𝑅𝑒𝐿𝑈 (·) is the relu activa-

tion function [19].

3.4 Bias Estimation
To estimate the bias precisely, we need high-quality bias features.
Thus, bias estimation has two steps, 1) training biased extractors to
acquire high-quality bias features and 2) utilizing bias features to
estimate bias in each modality and calculate bias weight of samples.

3.4.1 GMAE loss. To facilitate biased extractors to gain high-quality
bias features, we develop GMAE loss. It is known that the biased
features are easier to learn than the robust features in the early
stage of training [20]. Based on this observation, prior studies em-
ploy GCE loss to train a biased model by amplifying the learning of
“easier” bias. To be specific, GCE loss can make the biased model
emphasize the “easier” samples with strong agreements between
the predictions of the biased model and the labels, which amplifies
the “prejudice” of the biased model. This is because the “easier”
samples in the early training stage are more likely to be biased and
hence the model makes more accurate predictions for biased sam-
ples. However, GCE loss is elaborately designed for classification
tasks and cannot be employed for a regression task such as MSA.
Thus, we develop GMAE loss to amplify the prejudice specifically
for the regression task. The designed GMAE loss is as follows,{

𝑌𝑚
𝐵

= w𝑚
𝐵
f𝑚
𝐵
+ 𝑏𝑚

𝐵
,

L𝑚
𝐺𝑀𝐴𝐸

(𝑌,𝑌𝑚
𝐵
) = −2 ln(𝑒 |𝑌−𝑌𝑚

𝐵
| + 1) + 2|𝑌 − 𝑌𝑚

𝐵
|,

(7)

where w𝑚
𝐵

∈ R1×𝑑𝑠 and 𝑏𝑚
𝐵

∈ R are trainable parameters. ln(·)
denotes natural logarithm, and | ·| denotes absolute value. To cal-
culate GMAE loss, we forward the biased features for prediction,
𝑌𝑚
𝐵

∈ R are the sentiment predictions based on biased features f𝑚
𝐵

without swapping process.
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The gradient of the GMAE loss up-weights the gradient of MAE
loss when the sample has a low absolute value between the predic-
tion and the label as follows,

∇L𝐺𝑀𝐴𝐸 (𝑌,𝑌𝑚𝐵 ) = 2
1 + 𝑒 |𝑌−𝑌𝑚

𝐵
| ∇L𝑀𝐴𝐸 (𝑌,𝑌𝑚𝐵 ) . (8)

We assign greater weights to samples that are predicted well by
the biased model, i.e., the lower |𝑌 − 𝑌𝑚

𝐵
|, the higher 2

1+𝑒 |𝑌 −𝑌𝑚
𝐵

| . In
addition, GMAE loss is able to keep the gradient weight between
0 and 1, which avoids gradient explosion and makes the training
process more stable. To sum up, by GMAE loss, a sample with an
“easier” biased feature could gain low absolute value and high gra-
dient weight while training, which helps the biased model amplify
the “prejudice”.

Meanwhile, to make biased models learn biased features from
swapped samples, we utilize swapped labels 𝑌𝑚 for calculating
GMAE loss as follows,

𝑌𝑚
𝐵

= w𝑚
𝐵
f̂
𝑚

𝐵 + 𝑏𝑚
𝐵
,

L̂𝑚
𝐺𝑀𝐴𝐸

(𝑌𝑚, 𝑌𝑚
𝐵
) = −2 ln(𝑒 |𝑌𝑚−𝑌𝑚

𝐵
| + 1) + 2|𝑌𝑚 − 𝑌𝑚

𝐵
|,

(9)

where swapped labels 𝑌𝑚 are along with the same selected sample
of v̂𝑚 to make biased models focus on the bias information, and
𝑌𝑚
𝐵

∈ R are the sentiment predictions based on biased features f̂𝑚𝐵
with swapping process.

3.4.2 Bias weight Calculation. The biased extractors are trained
with amplifying the “prejudice” by GMAE loss so that biased mod-
els are good at utilizing biased features for prediction. The more
precisely the biased model predicts, the more biased the sample is.
Thus, we employ the absolute value calculated between the pre-
diction and the label to measure how much each modality is likely
to be biased. The smaller the absolute value, the larger the bias in
the modality. Then, we estimate the bias weight of a sample by
calculating the minimum or average value of absolute value in each
modality and taking the inverse as follows,

𝜓𝑚𝑖𝑛 (𝑌,𝑌𝑚𝐵 ) = 1
min( |𝑌−𝑌 𝑡

𝐵
|, |𝑌−𝑌𝑎

𝐵
|, |𝑌−𝑌 𝑣

𝐵
| ) ,

𝜓𝑎𝑣𝑔 (𝑌,𝑌𝑚𝐵 ) = 1
avg( |𝑌−𝑌 𝑡

𝐵
|, |𝑌−𝑌𝑎

𝐵
|, |𝑌−𝑌 𝑣

𝐵
| ) ,

(10)

where𝜓 (·) denotes the bias weight estimation function of a sample,
the larger the bias weight is, the more bias a sample has. We regard
the two equations in Eqn.(10) as MinStrategy and AvgStrategy, re-
spectively. We consider that MinStrategy selects the most biased
modality to indicate how much a sample is biased and AvgStrategy
estimates the bias degree of a sample based on the biased degree of
the three modalities simultaneously.

3.5 Debiasing Optimization
In this module, we first fuse multimodal robust features by multi-
head self-attention. To learn robust representations from biased
data with spurious correlations, we use IPW-enhanced MAE loss
for training, where a sample with strong bias will be assigned with
a small weight for training. Finally, we calculate the overall training
objective for debiasing optimization.

3.5.1 Robust Features Fusion. Due to the superior performance of
sentiment analysis brought by multimodal features, we develop a
multimodal fusion mechanism for final prediction. And to reinforce
the generalization ability of the model, we utilize the robust features
for fusion.

First, we stack the three robust features (from Eqn.(6)) into a ma-
trixM = [f𝑡

𝑅
, f𝑎
𝑅
, f𝑣
𝑅
] ∈ R3×𝑑𝑠 . Then, in order to make each vector

aware of its companion cross-modal features, we employ a multi-
head self-attention on these features. By doing this, each feature
is given the opportunity to gain consistent and complementary
information from other features that could contribute to the over-
all sentiment analysis. Specifically, suppose we have 𝑈 attention
heads, and the attention function of the 𝑖-th attention head can be
formulated as follows,{

Q𝑖 = MW𝑞

𝑖
,K𝑖 = MW𝑘

𝑖
,V𝑖 = MW𝑣

𝑖
,

O𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (Q𝑖K
𝑇
𝑖
/
√
𝑑𝑠 )V𝑖 ,

(11)

where Q𝑖 ,K𝑖 ,V𝑖 O𝑖 ∈ R3×
𝑑𝑠
𝑈 are the query, the key, and the value

projected from the matrix M, respectively. W𝑞/𝑘/𝑣
𝑖

∈ R𝑑𝑠×
𝑑𝑠
𝑈 are

learnable matrices in the 𝑖-th attention head. The multi-head self-
attention outputs a matrix M̂ ∈ R3×𝑑𝑠 as follows,

M̂ = [O1; . . . ;O𝑈 ]W𝑜 , (12)

where W𝑜 ∈ R𝑑𝑠×𝑑𝑠 , and each O𝑖 here is calculated based on
Eqn.(11). Finally, we take the multi-head self-attention output M̂ ∈
R3×𝑑𝑠 and construct a joint-vector f𝑜 ∈ R3𝑑𝑠 using concatenation.
The final sentiment predictions are then generated by a classifier
as follows,

�̃� = wf𝑜 + 𝑏, (13)

where w ∈ R3𝑑𝑠 and 𝑏 ∈ R. Meanwhile, we also fuse the robust
features f̂𝑚𝑅 disentangled from swapped concatenated vectors in
the same way as above to calculate 𝑌 .

3.5.2 IPW-enhanced MAE loss. For the regression task, existing
studies mostly utilize MAE loss as follows,

L𝑀𝐴𝐸 = |𝑌 − �̃� |. (14)

However, MAE loss treats samples with/without bias equally. Train-
ing with MAE loss, robust extractors cannot focus on samples
without bias to learn robust features, which acquire features that
contain biased features from biased samples. We thus can train
robust extractors by making them focus on learning unbiased sam-
ples. Our robust extractors are unable to extract robust features
from unbiased samples since they cannot recognize which sample
is unbiased. To learn robust features from biased data with spurious
correlations, a widely used method is IPW [23], where a sample
with strong bias will be assigned with a small weight for training.
This helps robust extractors focus on learning robust features of
unbiased samples. Thus, we utilize IPW-enhanced MAE loss for
training, which re-weight the MAE loss by bias weight as follows,

L𝐼𝑃𝑊 = L𝑀𝐴𝐸 · 1
𝑃 (𝑥 |𝐵𝑖𝑎𝑠 (𝑥)) + 1

. (15)

This IPW implies that if a sample 𝑥 = [𝑇,𝐴,𝑉 ] is more likely
associated with its biased features (i.e., 𝐵𝑖𝑎𝑠 (𝑥)), we should under-
weight the loss to discourage such a biased sample. We calculate



MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada Sun et al.

𝑃 (𝑥 |𝐵𝑖𝑎𝑠 (𝑥)) as follows,
𝑃 (𝑥 |𝐵𝑖𝑎𝑠 (𝑥)) ∝ 𝜓 (𝑌,𝑌𝑚𝐵 ) · ( |𝑌 − �̃� |), (16)

where 𝜓 (·) is illustrated in Eqn.(10), and |𝑌 − �̃� | is the absolute
value without gradients.

Meanwhile, we also calculate IPW-enhanced MAE loss for the
swapped sample. To make robust extractors focus on robust infor-
mation, we employ 𝑌 as the label of the swapped sample and the
same weight for MAE loss as follows,{ L̂𝑀𝐴𝐸 = |𝑌 − 𝑌 |,

L̂𝐼𝑃𝑊 = L̂𝑀𝐴𝐸 · 1
𝑃 (𝑥 |𝐵𝑖𝑎𝑠 (𝑥 ) )+1 .

(17)

3.5.3 Training Objective. The overall learning objective of the
model is performed by minimizing,

L = L𝐼𝑃𝑊 + 𝜆L𝑚
𝐺𝑀𝐴𝐸 + 𝛽 (L̂𝐼𝑃𝑊 + 𝜆L̂𝑚

𝐺𝑀𝐴𝐸 ), (18)

where 𝜆 and 𝛽 are adjusted for weighting the importance of GMAE
loss and swap, respectively. To ensure that robust modules and
biased modules focus on robust attributes and biased attributes, re-
spectively, L𝐼𝑃𝑊 and L̂𝐼𝑃𝑊 are backpropagated to robust features
fusion, robust linear, and robust extractor, L𝑚

𝐺𝑀𝐴𝐸
and L̂𝑚

𝐺𝑀𝐴𝐸
are

backpropagated to linear, biased linear, and biased extractor.

4 EXPERIMENTS
In this section, we conducted extensive experiments on two widely-
used benchmark datasets, (i.e., MOSI and MOSEI), to answer the
following research questions.
• RQ 1: Does GEAR outperform state-of-the-art MSA baselines on
the OOD testing sets?

• RQ 2: How does GEAR perform on the IID testing set?
• RQ 3: How does each component affect GEAR?
• RQ 4: How is the qualitative performance of GEAR?

4.1 Experimental Settings
4.1.1 Datasets. To demonstrate the effectiveness of our GEAR, we
conducted extensive experiments on MOSI and MOSEI datasets,
which are widely used in the MSA task.
• MOSI [43] is a publicly released MSA dataset. It collects 2,199
utterance-video clips of 93 monologue videos from YouTube
platform1, each of which is labeled with a continuous sentiment
score ranging from -3 (strongly negative) to 3 (strongly positive).

• MOSEI [44] is an expanded version of MOSI. In MOSEI, 3,837
monologue videos are also collected from YouTube, involving
250 topics and 22,856 utterance-level labeled instances, each of
which is also labeled with a continuous sentiment score ranging
from -3 to 3.

The video clips in the two datasets consist of textual descriptions,
acoustic tracks, and visual keyframes, which provide multimodal
information to reflect the sentiment.

4.1.2 IID and OOD Settings. We removed the spurious correla-
tions by discarding samples from the IID testing set to build the
OOD testing sets. Due to the different bias types across modalities,
we employed different strategies to construct the OOD datasets
for different modalities. For the OOD Text set, following Sun et
1https://www.youtube.com.

al. [29], we adopt the same method as described in this paper and
refer to it for further details. We first obtained the distribution of
word frequency in different sentiment categories. Then, we used
the simulated annealing algorithm for dataset construction, which
iteratively optimizes the OOD Text set to make the distribution of
all words on different sentiment categories as same as possible, (e.g.,
the word “movie” has an equal number of positive and negative cat-
egories). For the OOD Audio set and OOD Video set, the attributes
of the audio and video are not recognizable by humans, and thus
the distributions of each attribute are inaccessible. To mitigate this
issue, we employ K-means clustering on hand-crafted features pro-
vided by [39] of the audio or video to obtain 𝑘 clusters for each
modality (𝑘 = 100 for audio and video). We assume that each cluster
derived from K-means represents an attribute, and for the two OOD
datasets, we ensure that all attributes appear equally in different
sentiment categories by random sampling. For example, if there
are four positive samples and six negative samples in a cluster, we
randomly sample four samples from the six negative samples to en-
sure that the number of samples in each category is the same, (e.g.,
make “blue background” appear equally in positive and negative
categories). For OOD TAV set, we first obtained the distribution of
word frequency and attributes in different sentiment categories as
mentioned above. Following the existing work [29], we employed
the simulated annealing algorithm to make the distribution of all
words and all attributes on different sentiment categories as same
as possible simultaneously.

4.1.3 Evaluation Tasks and Metric. Due to space limitations and
following the latest work [29], we mainly focus on the metrics of
accuracy and F1 score. Two distinct formulations have been consid-
ered in the past. The first is 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒/𝑛𝑜𝑛-𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 where 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
denotes a class with sentiment scores < 0 and 𝑛𝑜𝑛-𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 class
with sentiment scores >= 0. Second, recent work [8] employs a
more accurate formulation of 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒/𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 classes where neg-
ative and positive classes are assigned with < 0 and > 0 senti-
ment scores, respectively. For the fair competition, we reported
both 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒/𝑛𝑜𝑛-𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 and 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒/𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 results. We con-
verted the predicted score on the regression task into these two
formulations, and then we used Accuracy and Weighted-F1 to mea-
sure the performance of the models.

4.1.4 Baselines. To evaluate the performance of GEAR, we em-
ployed the following methods for comparison.
• MISA [8]: The model projects modalities into model-specific
and model-invariant vectors, capturing cross-modal interactions.

• MAG-BERT [24]: This baseline employs the nonverbal represen-
tations with sentimental polarity to shift lexical representations
within the pretrained language model.

• Self-MM [39]: This model develops a unimodal sentiment label-
generating module based on a self-supervised method to aid in
learning modality-specific representations.

• CENet [31]: This baseline employs an attention-based gate to
capture asynchronous emotion cues from unaligned data.

• Cube-MLP [26]: This baseline develops MLPs to mix features
on three dimensions: sequence, modality, and channel.

• CLUE [29]: This framework captures the direct effect of textual
modality via an extra text model and estimates the total effect by
an MSA model.
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Table 1: IID and OOD testing performance (%) comparison among different methods on MOSEI datasets. For Acc-2 and F1, we
reported results on both these metrics using the segmentation marker -/- where the left-side score is for 𝑛𝑒𝑔./𝑛𝑜𝑛𝑛𝑒𝑔. while the
right-side score is for 𝑛𝑒𝑔./𝑝𝑜𝑠. The AVG (OOD) means the average result over four OOD sets. 𝐼𝑚𝑝. denotes the improvement
of our model compared to the best-performing baseline. The best result is highlighted in bold and the second-best result is
underlined. †𝑝 < 0.05 under McNemar’s Test for accuracy improvement compared with all baselines.

Model
MOSEI

IID OOD Text OOD Audio OOD Video OOD TAV AVG (OOD)
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

MISA 82.91/85.47 83.11/85.28 79.06/81.23 79.00/81.06 80.09/81.73 80.03/81.89 80.64/81.70 80.57/81.86 77.32/79.60 77.26/79.80 79.28/81.07 79.22/81.15
MAG-BERT 83.14/84.61 83.27/84.40 79.15/80.06 79.00/79.86 80.40/81.07 80.32/81.23 80.65/80.84 80.55/80.99 77.83/78.58 77.73/78.79 79.51/80.14 79.40/80.22
Self-MM 84.69/85.35 84.69/85.10 80.53/80.60 80.31/80.39 81.53/81.47 81.42/81.63 81.40/81.01 81.28/81.15 78.75/78.65 78.62/78.85 80.55/80.43 80.41/80.51
CENet 82.77/85.13 83.00/84.97 78.61/80.73 78.56/80.57 80.32/81.81 80.26/81.96 80.89/81.70 80.81/81.85 77.29/79.28 77.22/79.48 79.28/80.88 79.21/80.97

CubeMLP 83.38/85.05 83.48/84.81 79.33/80.44 79.16/80.22 80.65/81.48 80.56/81.63 81.05/81.37 80.95/81.52 77.98/79.00 77.88/79.19 79.75/80.57 79.64/80.64
CLUE 83.99/85.06 83.90/85.26 80.91/81.09 81.14/81.33 81.03/80.72 81.16/80.57 81.54/80.95 81.70/80.82 78.48/78.48 78.65/78.06 80.49/80.31 80.66/80.20
GEAR† 84.06/85.88 84.30/85.79 80.99/82.33 80.97/82.24 82.45/83.48 82.42/83.64 82.51/83.05 82.48/83.21 79.85/81.22 79.82/81.41 81.45/82.52 81.42/82.63

Table 2: IID and OOD testing performance (%) comparison among different methods on MOSI datasets. The explanations of
notations are the same as those in Table 1.

Model
MOSI

IID OOD Text OOD Audio OOD Video OOD TAV AVG (OOD)
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

MISA 82.66/84.2 82.65/84.24 78.42/79.53 78.41/79.54 81.24/83.14 81.22/83.13 81.33/82.91 81.31/82.91 76.97/79.19 76.95/79.20 79.49/81.19 79.47/81.20
MAG-BERT 83.04/84.81 83.00/84.82 79.20/80.76 79.18/80.76 82.29/84.37 82.24/84.35 81.59/83.62 81.57/83.61 77.55/79.92 77.51/79.92 80.16/82.17 80.13/82.16
Self-MM 82.95/84.81 82.87/84.79 79.20/81.17 79.17/81.17 81.36/83.66 81.29/83.61 81.66/83.76 81.63/83.74 78.23/80.54 78.18/80.52 80.11/82.28 80.07/82.26
CENet 82.27/84.09 82.14/84.03 79.79/81.28 79.71/81.22 80.68/82.88 80.58/82.80 81.19/83.26 81.12/83.22 78.04/80.33 77.97/80.30 79.93/81.94 79.85/81.89

CubeMLP 81.73/83.64 81.60/83.58 79.40/81.28 79.30/81.21 79.94/82.10 79.85/82.04 80.52/82.70 80.45/82.65 78.23/80.33 78.14/80.27 79.52/81.60 79.44/81.54
CLUE 82.79/84.68 82.87/84.71 78.97/81.07 79.03/81.09 80.56/82.80 80.60/82.83 81.32/83.55 81.35/83.56 77.38/79.79 77.43/79.81 79.56/81.80 79.60/81.82
GEAR† 83.29/84.96 83.22/84.95 80.47/82.10 80.44/82.09 82.22/84.31 82.16/84.27 82.53/84.39 82.50/84.37 79.98/82.09 79.94/82.08 81.30/83.22 81.26/83.20

4.1.5 Implementation Details. We implemented all baselines and
our GEAR using Pytorch2. To optimize the parameters of themodels,
we adopted Adam [13] optimizer with a learning rate of 5𝑒-5 for
BERT and 1𝑒-3 for other modules. Note that, as we needed well-
disentangled robust and biased features for swap, we began to
swap after certain epochs 𝑒𝑠 . We employed a grid search strategy
to identify the optimal hyperparameters for our model. Specifically,
we set the batch size 𝑁 to 32, the latent vector dimension 𝑑𝑠 to 32,
the head number𝑈 to 4, and the swap weight 𝛽 to 0.3. Additionally,
we set the swap epochs 𝑒𝑠 to 8 and 11, and the GMAE weight
𝜆 to 10 and 18, for MOSEI and MOSI, respectively. Besides, we
employed the early stopping strategy, which stops the training if
the accuracy score/loss does not increase/decrease for 8 successive
epochs. For all baselines, we used the grid search strategy to find
the optimal parameter settings to achieve the best performance. For
a fair comparison, we reported the average experimental results on
accuracy and F1 score over three random seeds.

4.2 Model Comparison (RQ1 & RQ2)
We conducted experiments on the IID and OOD testing sets of MO-
SEI and MOSI datasets, respectively. As shown in Tables 1 and 2,
we had the following observations. 1) The average accuracy on
𝑛𝑒𝑔./𝑝𝑜𝑠 was observed to increase by 1.46% on the MOSEI dataset
and by 1.14% on the MOSI dataset. GEAR achieves clear margins
over the prior methods on OOD sets, which demonstrates that
GEAR has superior debiasing ability over existing methods. After
conducting significant tests, 𝑝 < 0.05 proves that our results are
2https://pytorch.org.

significant. 2) In particular, the improvements are most obvious in
the OOD TAV testing set. The possible reason is that the OOD TAV
testing set removes spurious correlations in all three modalities and
the models’ general debiasing ability removed bias in three modali-
ties. 3) The improvement of GEAR on the IID testing set is smaller
than on OOD testing sets, which indicates that the bias between
the training set and the IID testing set is very small and GEAR’s
debiasing ability cannot be fully utilized. 4) On the unimodal and
multimodal OOD testing sets, all methods perform worse than on
IID testing sets. This demonstrates that methods indeed suffer from
the spurious correlation for prediction. In spite of this, the perfor-
mance decrease of GEAR is the least compared with that of baseline
methods. And 5) CLUE performs well on the OOD Text set of the
MOSEI dataset, for which we reasoned that CLUE is specifically
designed for reducing spurious correlations between textual words
and sentiment labels. However, on the other two unimodal testing
sets and the multimodal testing set, CLUE performs worse than our
GEAR. One reasonable explanation is that CLUE has limited ability
in debiasing the acoustic and visual modalities.

4.3 Ablation Study (RQ3)
To verify the effectiveness of the main components in the proposed
model, we conducted extensive ablation studies on OOD TAV, OOD
Text, OOD Audio, and OOD Video datasets. We introduced several
variants for analysis. (1) w/o-IPW. In this variant, we replaced
L𝐼𝑃𝑊 and L̂𝐼𝑃𝑊 with L𝑀𝐴𝐸 and L̂𝑀𝐴𝐸 by removing the weight
of MAE loss in Eq.(15) and Eq.(17). (2) w/o-GMAE. To verify the
effect of the proposed GMAE loss, we trained the biased model

https://pytorch.org
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Table 3: Ablation study results (%) for 𝑛𝑒𝑔./𝑝𝑜𝑠. results of
GEAR on OOD TAV testing sets of MOSEI and MOSI dataset.
The best results are highlighted in boldface.

Model MOSEI MOSI
Acc F1 Acc F1

GEAR (OOD TAV) 81.22 81.41 82.09 82.08
w/o-IPW 78.84 79.03 81.37 81.29
w/o-GMAE 79.88 80.08 80.12 80.12
w/o-Swap 80.32 80.51 81.47 81.49

GEAR (OOD Text) 82.33 82.24 82.10 82.09
w/o-Text 81.22 81.06 81.07 81.05

GEAR (OOD Audio) 83.48 83.64 84.31 84.27
w/o-Audio 81.75 81.91 81.77 81.78

GEAR (OOD Video) 83.05 83.21 84.39 84.37
w/o-Video 82.06 82.21 84.04 84.02

with standard MAE loss instead of our proposed GMAE loss by
replacing GMAE loss in Eq.(18) with MAE loss. (3) w/o-Swap.
We set swap epochs 𝑒𝑠 to an extremely large number to remove
the swap operation. (4) w/o-Text, w/o-Audio, and w/o-Video.
We removed the bias estimation of text, audio, or video modality,
respectively. In other words, we calculated the bias weight only
using two modalities in Eq.(10). These variants are tested on their
corresponding OOD testing sets.

Table 3 shows the results of the ablation studies. First, after em-
ploying the model w/o-IPW, we can see the performance drops
significantly. This phenomenon shows assigning a small weight to
a sample with a strong bias for debiasing is indeed indispensable.
Second, the setting of w/o-GMAE obtains worse results than the
original model. This is because our proposed GMAE loss can train
a model to be biased by amplifying the prejudice. However, the
model trained with standard MAE loss not only exploits the biased
attribute but also partially learns the robust attribute, which can
hurt the debiasing ability of our overall algorithm by estimating
the bias of each modality inaccurately. Third, GEAR w/o-Swap per-
forms marginally better than almost all models in MOSEI and MOSI
datasets, but not as well as GEAR. Compared to GEAR w/o-Swap,
GEAR gains the relative improvements of 0.90% and 0.62% evalu-
ated by 𝐴𝑐𝑐 for the two datasets, respectively. This shows that the
diversity of samples for disentanglement is crucial for optimal per-
formance. Furthermore, we observed that after removing the bias
estimation of any modality, the performance on the corresponding
dataset drops significantly, which confirms that GEAR has superior
general debiasing ability with each modality.

4.4 Case Study (RQ4)
To gain more insights into our model, we randomly selected four
cases to explain how the spurious correlations in video modality
affect the traditional MSA model and why GEAR is able to han-
dle such spurious correlations in the testing set. We illustrated
the binary (𝑛𝑒𝑔./𝑝𝑜𝑠.) results of Self-MM and GEAR on four test-
ing samples from MOSI datasets in Figure 3 because the Self-MM
shows the best overall performance (i.e., AVG (OOD)). To learn
the debiasing ability of our model, for each case, we recognized
its biased attribute and counted the sentiment frequency of this
biased attribute in the training dataset. There are 93 videos in the
MOSI dataset, each of which has several clips. The clips in the same

Sentiment Label: Negative

Biased Attribute: Black Clothes

Distribution in training set: 
Positive:Negative = 13:8

Baseline Prediction: Positive

Ours Prediction: Negative

Sentiment Label: Positive

Biased Attribute: White Background

Distribution in training set: 
Positive:Negative = 13:22

Baseline Prediction: Negative

Ours Prediction: Positive

Case 1 Case 2

Figure 3: Two testing cases of the baseline (i.e., Self-MM) and
GEAR on the 𝑛𝑒𝑔./𝑝𝑜𝑠. results.

video have the same biased attributes, and thus, for convenience,
our biased attributes statistics was at the video level. However, the
dataset is labeled at the clip level. To obtain the video-level label,
we selected the dominant label of all video clips as the video label.
In detail, for a video, if there are more positive video clips than
negative video clips, then the video is considered positive.

Taking Case 1 as an example, we can see that there is a woman
with a smile and white background. By manual recognition, we
found a total of 35 videos with white backgrounds from the train-
ing set, 13 with positive sentiment labels, and 22 with negative
sentiment labels. And the white background is a kind of superfi-
cial feature that can be captured easily by models. Thus, the white
background is a biased attribute that induces spurious correlations
with sentiment labels. The traditional MSA model cannot reduce
the spurious correlations, it thus predicts Case 1 as negative senti-
ment. Different from Self-MM, GEAR is able to handle this biased
case by employing robust features such as the smile of the women
for prediction. This demonstrates that GEAR has strong debiasing
ability. A similar observation can be found in Case 2.

5 CONCLUSION AND FUTUREWORK
In this work, we first point out the spurious correlations between
multimodal input data and sentiment labels and formulate a general
debiasing multimodal sentiment analysis task. We design a novel
general debiasing framework for multimodal sentiment analysis,
GEAR for short, which strengthens the generalization ability via
disentangling the robust features and bias features of textual, acous-
tic, and visual modalities, estimating the bias weight, and training
with IPW-enhanced loss. Extensive experiments on two datasets
(i.e.,MOSEI and MOSI) confirm the existence of spurious correla-
tions and also indicate the superior generalization ability of GEAR
on OOD testing sets. In future work, we will explore new strategies
such as invariant feature learning to learn better disentangle biased
features and facilitate bias estimation.
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